Genetic Regulation of Apoptosis in Cancerous vs. Normal Cells

Elizabeth M Johnson

Department of Molecular Biology, Harvard University, USA

* Corresponding Author: Elizabeth M Johnson

Article Info

Volume: 01 Issue: 01

January-February 2025 Received: 21-12-2024 Accepted: 15-01-2025

Page No: 01-02

Abstract

Apoptosis, or programmed cell death, is a tightly regulated process essential for maintaining cellular homeostasis. Disruptions in apoptotic pathways contribute to cancer development by allowing uncontrolled cell proliferation. This paper explores the genetic mechanisms regulating apoptosis in normal versus cancerous cells, focusing on key genes such as *TP53*, *BCL-2*, and *CASPASE* families. Additionally, we examine how mutations in these genes lead to evasion of apoptosis in cancer and discuss potential therapeutic strategies targeting apoptotic pathways.

Keywords: Apoptosis, Cancer, TP53, *BCL-2*, Caspases, Genetic Regulation

1. Introduction

Apoptosis is a genetically controlled process that eliminates damaged or unnecessary cells, playing a crucial role in development and tissue homeostasis (Elmore, 2007). In cancer, defects in apoptotic regulation allow malignant cells to survive and proliferate uncontrollably (Hanahan & Weinberg, 2011). This paper compares the genetic regulation of apoptosis in normal and cancerous cells, highlighting key differences and their implications for cancer therapy.

2. Apoptosis: An Overview

2.1. Intrinsic and Extrinsic Pathways

Apoptosis occurs via two major pathways:

- 1. Extrinsic Pathway Triggered by death receptors (e.g., Fas, TNF-R) activating caspase-8 (Ashkenazi & Dixit, 1998).
- 2. **Intrinsic Pathway** Mediated by mitochondrial release of cytochrome *c*, regulated by BCL-2 family proteins (Youle & Strasser, 2008).

2.2. Execution Phase

Both pathways converge on caspase-3 activation, leading to DNA fragmentation and cell death (Taylor et al., 2008).

3. Genetic Regulation in Normal Cells

3.1. Tumor Suppressor Genes

- TP53 (p53) Induces apoptosis in response to DNA damage (Vogelstein et al., 2000).
- PTEN Regulates AKT signaling, promoting apoptosis (Song et al., 2012).

3.2. Pro-Apoptotic Genes

- BAX, BAK Promote mitochondrial outer membrane permeabilization (MOMP) (Czabotar *et al.*, 2014).
- CASPASE-9 Initiates the caspase cascade (Shi, 2002).

3.3. Anti-Apoptotic Genes

• BCL-2, BCL-XL – Inhibit MOMP, preventing cytochrome *c* release (Chipuk *et al.*, 2010).

4. Dysregulation of Apoptosis in Cancer

4.1. Loss of Tumor Suppressors

- TP53 Mutations Found in >50% of cancers, impairing apoptosis (Olivier *et al.*, 2010).
- Epigenetic Silencing Promoters of *APAF1* and *CASPASE-8* are often methylated in tumors (Fulda, 2009).

4.2. Overexpression of Anti-Apoptotic Proteins

- BCL-2 Amplification Common in lymphomas (Tsujimoto *et al.*, 1985).
- MCL-1 Upregulation Associated with therapy resistance (Beroukhim et al., 2010).

4.3. Defective Death Receptor Signaling

FAS Mutations – Reduce extrinsic apoptosis in liver cancer (Park *et al.*, 2007).

5. Therapeutic Strategies Targeting Apoptosis

5.1. BH3 Mimetics

• Venetoclax (ABT-199) – Inhibits BCL-2 in leukemia (Souers *et al.*, 2013).

5.2. p53 Reactivation

• PRIMA-1Met (APR-246) – Restores mutant p53 function (Bykov *et al.*, 2018).

5.3. Caspase Activation

• TRAIL-Based Therapies – Induce extrinsic apoptosis (Johnstone *et al.*, 2008).

6. Conclusion

Apoptotic dysregulation is a hallmark of cancer, driven by genetic alterations in tumor suppressors and anti-apoptotic genes. Understanding these mechanisms provides avenues for targeted therapies, such as BH3 mimetics and p53 reactivators. Future research should focus on overcoming resistance mechanisms to improve treatment efficacy.

7. References

- 1. Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. Science. 1998;281(5381):1305-8.
- 2. Beroukhim R, *et al.* The landscape of somatic copynumber alteration across human cancers. Nature. 2010;463(7283):899-905.
- 3. Bykov VJN, *et al.* Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound. Nat Med. 2018;24(8):1219-29.
- 4. Chipuk JE, *et al.* The BCL-2 family reunion. Mol Cell. 2010;37(3):299-310.
- 5. Czabotar PE, *et al.* Control of apoptosis by the BCL-2 protein family. Nat Rev Mol Cell Biol. 2014;15(1):49-63.
- 6. Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495-516.
- 7. Fulda S. Tumor resistance to apoptosis. Int J Cancer. 2009;124(3):511-5.
- 8. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.

- Johnstone RW, et al. TRAIL receptor-targeted therapeutics. Nat Rev Drug Discov. 2008;7(12):1011-30
- 10. Olivier M, *et al.* TP53 mutations in human cancers. Hum Mutat. 2010;25(6):571-8.
- 11. Park S, *et al.* FAS mutations in hepatocarcinogenesis. J Pathol. 2007;212(2):134-41.
- 12. Shi Y. Mechanisms of caspase activation. Curr Opin Cell Biol. 2002;14(6):715-20.
- 13. Song MS, *et al.* The functions and regulation of the PTEN tumor suppressor. Nat Rev Mol Cell Biol. 2012;13(5):283-96.
- 14. Souers AJ, *et al.* ABT-199, a potent BCL-2 inhibitor. Nat Med. 2013;19(2):202-8.
- 15. Taylor RC, *et al.* Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9(3):231-41.
- 16. Tsujimoto Y, *et al.* BCL-2 gene in B-cell lymphoma. Science. 1985;228(4706):1440-3.
- 17. Vogelstein B, *et al.* Surfing the p53 network. Nature. 2000;408(6810):307-10.
- 18. Youle RJ, Strasser A. The BCL-2 protein family. Nat Rev Mol Cell Biol. 2008;9(1):47-59.