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Abstract 
Climate change is causing unprecedented alterations to marine ecosystems through 
rising temperatures, ocean acidification, and deoxygenation, threatening global marine 
biodiversity. Recent advances in genomic technologies have revolutionized our 
understanding of how marine species respond to these environmental stressors at the 
molecular level. This comprehensive review synthesizes current knowledge on 
genomic, transcriptomic, and epigenomic responses of marine organisms to climate 
change, with particular emphasis on adaptive evolution, phenotypic plasticity, and 
evolutionary rescue. We examine case studies across taxa including corals, fish, 
mollusks, and phytoplankton, highlighting conserved and taxon-specific stress 
response mechanisms. Furthermore, we discuss emerging conservation strategies 
informed by genomic data, such as assisted gene flow and genomic selection, and 
propose a framework for integrating multi-omics approaches with ecological modeling 
to predict and mitigate biodiversity loss in changing oceans. 
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1. Introduction 
The world's oceans are undergoing rapid environmental changes due to anthropogenic climate change, with surface temperatures 
rising by approximately 0.13°C per decade and seawater pH decreasing by 0.1 units since the pre-industrial era (IPCC, 2021). 
These physical changes are driving fundamental alterations in marine ecosystems, including range shifts, phenological changes, 
and mass mortality events (Pecl et al., 2017). Understanding how marine biodiversity will respond to these changes requires 
investigation at multiple biological scales, from ecosystems to molecules. 
Genomic approaches have emerged as powerful tools for studying marine organisms' responses to environmental stressors, 
providing insights into: 
1. The genetic basis of adaptation and acclimation 
2. Evolutionary potential under climate change scenarios 
3. Mechanisms of phenotypic plasticity 
4. Early warning signs of population vulnerability 
 
This paper provides a comprehensive synthesis of current knowledge on the genomic impacts of climate change on marine 
biodiversity, organized into four main themes: 
1. Genomic responses to key climate stressors 
2. Case studies across major marine taxa 
3. Evolutionary implications 
4. Conservation applications 
. 
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2. Climate Change Stressors and Genomic Responses 
2.1 Ocean Warming 
2.1.1 Physiological and Ecological Impacts 
• Global average sea surface temperature has increased by 

~1°C since 1900 (NOAA, 2022) 
• Thermal stress affects metabolic rates, enzyme function, 

and oxygen availability (Pörtner, 2010) 
 
2.1.2 Genomic Adaptations 
• Upregulation of heat shock proteins (HSP70, HSP90) 

across taxa (Barshis et al., 2013) 
• Selection on metabolic genes (e.g., Ldh-B in fish; 

Schulte, 2015) 
• Mitochondrial genome adaptations in thermal-tolerant 

populations (Dahlhoff et al., 2019) 
 
2.1.3 Epigenetic Regulation 
• DNA methylation changes associated with thermal 

acclimation (Ryu et al., 2018) 
• Histone modifications in response to chronic heat stress 

(Veilleux et al., 2015) 
 
2.2 Ocean Acidification 
2.2.1 Physiological Challenges 
• Reduced carbonate saturation affects calcifying 

organisms (Kroeker et al., 2013) 
• Acid-base regulation demands increased energy 

expenditure (Melzner et al., 2009) 
 
2.2.2 Genomic Responses 
• Differential expression of ion transport genes (NBC1, 

CA9) (Thor & Dupont, 2015) 
• Selection on carbonic anhydrase variants in 

phytoplankton (Jin et al., 2016) 
• Microbiome shifts affecting host gene expression 

(Webster et al., 2016) 
 
2.3 Deoxygenation 
2.3.1 Expanding Oxygen Minimum Zones 
• Global ocean oxygen content has decreased by 2% since 

1960 (Schmidtko et al., 2017) 
• Critical thresholds for aerobic metabolism (Deutsch et 

al., 2015) 
 
2.3.2 Genetic Adaptations 
• HIF-1α pathway modifications in hypoxia-tolerant 

species (Mandic et al., 2020) 
• Mitochondrial genome evolution in low-oxygen 

environments (Tiedke et al., 2014) 
 
3. Case Studies Across Taxa 
3.1 Coral Reef Ecosystems 
3.1.1 Bleaching Mechanisms 
• Breakdown of coral-algal symbiosis under thermal stress 

(Weis, 2008) 
• Genomic predictors of bleaching susceptibility (Bay et 

al., 2019) 
 
3.1.2 Adaptive Potential 
• Standing genetic variation in heat tolerance genes 

(Dixon et al., 2015) 
• Epigenetic memory of thermal stress (Putnam et al., 

2016) 
 
3.2 Commercially Important Fish Species 
3.2.1 Range Shifts and Local Adaptation 
• Genomic signatures of climate-driven range expansions 

(Pinsky et al., 2020) 
• Loss of genetic diversity in contracting populations 

(Therkildsen et al., 2019) 
 
3.2.2 Aquaculture Implications 
• Genomic selection for climate resilience (Gjedrem & 

Robinson, 2014) 
• GxE interactions in growth performance (Sae-Lim et al., 

2017) 
 
3.3 Marine Microbes and Phytoplankton 
3.3.1 Community Shifts 
• Metagenomic evidence of microbial regime shifts 

(Hutchins & Fu, 2017) 
• Viral shunt impacts on nutrient cycling (Brussaard et al., 

2008) 
 
3.3.2 Evolutionary Responses 
• Rapid adaptation in Emiliania huxleyi to high CO2 

(Lohbeck et al., 2012) 
• Horizontal gene transfer as adaptation mechanism (Biller 

et al., 2015) 
 
4. Evolutionary Implications 
4.1 Evolutionary Rescue Potential 
• Theoretical frameworks for marine systems (Bell, 2017) 
• Case studies of observed evolutionary rescue (Donelson 

et al., 2019) 
 
4.2 Limits to Adaptation 
• Genetic constraints and evolutionary trade-offs 

(Hoffmann & Sgrò, 2011) 
• Synergistic effects of multiple stressors (Gunderson et 

al., 2016) 
 
4.3 Phenotypic Plasticity 
• Genomic basis of acclimation capacity (Kelly, 2019) 
• Transgenerational epigenetic inheritance (Salinas et al., 

2013) 
 
5. Conservation Applications 
5.1 Genetically Informed Management 
• Assisted gene flow strategies (Aitken & Whitlock, 2013) 
• Selective breeding programs (van Oppen et al., 2015) 
 
5.2 Emerging Technologies 
• CRISPR-based genetic interventions (Cleves et al., 

2020) 
• Environmental DNA for biodiversity monitoring 

(Thomsen & Willerslev, 2015) 
 
5.3 Policy Integration 
• Genomic criteria for IUCN Red List assessments (Hoban 

et al., 2021) 
• Marine protected area network design (Selkoe et al., 

2016) 
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6. Future Directions 
6.1 Research Priorities 
• Multi-omics integration (genomics, transcriptomics, 

proteomics) 
• Improved experimental designs incorporating 

environmental variability 
 
6.2 Technological Advances 
• Single-cell genomics for non-model organisms 
• High-throughput phenotyping platforms 
 
6.3 Predictive Frameworks 
• Genotype-environment association mapping 
• Mechanistic models linking genes to ecosystems 
 
7. Conclusion 
This synthesis demonstrates that genomic approaches are 
revolutionizing our understanding of marine biodiversity 
responses to climate change. Key findings include: 
1. Marine organisms employ diverse genomic strategies to 

cope with environmental stressors 
2. Evolutionary potential exists but varies substantially 

among species 
3. Genomic tools offer novel conservation solutions but 

require careful implementation 
 
Future research should prioritize: 
• Long-term genomic monitoring programs 
• Experimental evolution studies 
• Development of genomic vulnerability indices 
 
The integration of genomic knowledge with ecosystem 
management will be critical for preserving marine 
biodiversity in an era of rapid climate change. 
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