Impact of Climate Change on Marine Biodiversity: A Genomic Perspective

Akshay Verma 1*, Maria Gonzalez 2

- ¹ Institute of Genomics and Integrative Biology, CSIR, India
- ² PhD, Department of Neuroscience, University of Barcelona, Spain
- * Corresponding Author: Akshay Verma

Article Info

Volume: 01 Issue: 01

January-February 2025 Received: 08-01-2025 Accepted: 03-02-2025

Page No: 03-06

Abstract

Climate change is causing unprecedented alterations to marine ecosystems through rising temperatures, ocean acidification, and deoxygenation, threatening global marine biodiversity. Recent advances in genomic technologies have revolutionized our understanding of how marine species respond to these environmental stressors at the molecular level. This comprehensive review synthesizes current knowledge on genomic, transcriptomic, and epigenomic responses of marine organisms to climate change, with particular emphasis on adaptive evolution, phenotypic plasticity, and evolutionary rescue. We examine case studies across taxa including corals, fish, mollusks, and phytoplankton, highlighting conserved and taxon-specific stress response mechanisms. Furthermore, we discuss emerging conservation strategies informed by genomic data, such as assisted gene flow and genomic selection, and propose a framework for integrating multi-omics approaches with ecological modeling to predict and mitigate biodiversity loss in changing oceans.

Keywords: Climate change, Marine genomics, Evolutionary adaptation, Ocean warming, Acidification, Conservation genomics

1. Introduction

The world's oceans are undergoing rapid environmental changes due to anthropogenic climate change, with surface temperatures rising by approximately 0.13°C per decade and seawater pH decreasing by 0.1 units since the pre-industrial era (IPCC, 2021). These physical changes are driving fundamental alterations in marine ecosystems, including range shifts, phenological changes, and mass mortality events (Pecl *et al.*, 2017). Understanding how marine biodiversity will respond to these changes requires investigation at multiple biological scales, from ecosystems to molecules.

Genomic approaches have emerged as powerful tools for studying marine organisms' responses to environmental stressors, providing insights into:

- 1. The genetic basis of adaptation and acclimation
- 2. Evolutionary potential under climate change scenarios
- 3. Mechanisms of phenotypic plasticity
- 4. Early warning signs of population vulnerability

This paper provides a comprehensive synthesis of current knowledge on the genomic impacts of climate change on marine biodiversity, organized into four main themes:

- 1. Genomic responses to key climate stressors
- 2. Case studies across major marine taxa
- 3. Evolutionary implications
- 4. Conservation applications

•

2. Climate Change Stressors and Genomic Responses

2.1 Ocean Warming

2.1.1 Physiological and Ecological Impacts

- Global average sea surface temperature has increased by ~1°C since 1900 (NOAA, 2022)
- Thermal stress affects metabolic rates, enzyme function, and oxygen availability (Pörtner, 2010)

2.1.2 Genomic Adaptations

- Upregulation of heat shock proteins (HSP70, HSP90) across taxa (Barshis *et al.*, 2013)
- Selection on metabolic genes (e.g., Ldh-B in fish; Schulte, 2015)
- Mitochondrial genome adaptations in thermal-tolerant populations (Dahlhoff *et al.*, 2019)

2.1.3 Epigenetic Regulation

- DNA methylation changes associated with thermal acclimation (Ryu et al., 2018)
- Histone modifications in response to chronic heat stress (Veilleux *et al.*, 2015)

2.2 Ocean Acidification

2.2.1 Physiological Challenges

- Reduced carbonate saturation affects calcifying organisms (Kroeker *et al.*, 2013)
- Acid-base regulation demands increased energy expenditure (Melzner *et al.*, 2009)

2.2.2 Genomic Responses

- Differential expression of ion transport genes (NBC1, CA9) (Thor & Dupont, 2015)
- Selection on carbonic anhydrase variants in phytoplankton (Jin et al., 2016)
- Microbiome shifts affecting host gene expression (Webster et al., 2016)

2.3 Deoxygenation

2.3.1 Expanding Oxygen Minimum Zones

- Global ocean oxygen content has decreased by 2% since 1960 (Schmidtko et al., 2017)
- Critical thresholds for aerobic metabolism (Deutsch *et al.*, 2015)

2.3.2 Genetic Adaptations

- HIF-1α pathway modifications in hypoxia-tolerant species (Mandic *et al.*, 2020)
- Mitochondrial genome evolution in low-oxygen environments (Tiedke *et al.*, 2014)

3. Case Studies Across Taxa

3.1 Coral Reef Ecosystems

3.1.1 Bleaching Mechanisms

- Breakdown of coral-algal symbiosis under thermal stress (Weis, 2008)
- Genomic predictors of bleaching susceptibility (Bay *et al.*, 2019)

3.1.2 Adaptive Potential

- Standing genetic variation in heat tolerance genes (Dixon *et al.*, 2015)
- Epigenetic memory of thermal stress (Putnam et al.,

2016)

3.2 Commercially Important Fish Species

3.2.1 Range Shifts and Local Adaptation

- Genomic signatures of climate-driven range expansions (Pinsky *et al.*, 2020)
- Loss of genetic diversity in contracting populations (Therkildsen *et al.*, 2019)

3.2.2 Aquaculture Implications

- Genomic selection for climate resilience (Gjedrem & Robinson, 2014)
- GxE interactions in growth performance (Sae-Lim *et al.*, 2017)

3.3 Marine Microbes and Phytoplankton

3.3.1 Community Shifts

- Metagenomic evidence of microbial regime shifts (Hutchins & Fu, 2017)
- Viral shunt impacts on nutrient cycling (Brussaard et al., 2008)

3.3.2 Evolutionary Responses

- Rapid adaptation in Emiliania huxleyi to high CO2 (Lohbeck *et al.*, 2012)
- Horizontal gene transfer as adaptation mechanism (Biller *et al.*, 2015)

4. Evolutionary Implications

4.1 Evolutionary Rescue Potential

- Theoretical frameworks for marine systems (Bell, 2017)
- Case studies of observed evolutionary rescue (Donelson *et al.*, 2019)

4.2 Limits to Adaptation

- Genetic constraints and evolutionary trade-offs (Hoffmann & Sgrò, 2011)
- Synergistic effects of multiple stressors (Gunderson *et al.*, 2016)

4.3 Phenotypic Plasticity

- Genomic basis of acclimation capacity (Kelly, 2019)
- Transgenerational epigenetic inheritance (Salinas *et al.*, 2013)

5. Conservation Applications

5.1 Genetically Informed Management

- Assisted gene flow strategies (Aitken & Whitlock, 2013)
- Selective breeding programs (van Oppen et al., 2015)

5.2 Emerging Technologies

- CRISPR-based genetic interventions (Cleves *et al.*, 2020)
- Environmental DNA for biodiversity monitoring (Thomsen & Willerslev, 2015)

5.3 Policy Integration

- Genomic criteria for IUCN Red List assessments (Hoban *et al.*, 2021)
- Marine protected area network design (Selkoe *et al.*, 2016)

6. Future Directions

6.1 Research Priorities

- Multi-omics integration (genomics, transcriptomics, proteomics)
- Improved experimental designs incorporating environmental variability

6.2 Technological Advances

- Single-cell genomics for non-model organisms
- High-throughput phenotyping platforms

6.3 Predictive Frameworks

- Genotype-environment association mapping
- Mechanistic models linking genes to ecosystems

7. Conclusion

This synthesis demonstrates that genomic approaches are revolutionizing our understanding of marine biodiversity responses to climate change. Key findings include:

- 1. Marine organisms employ diverse genomic strategies to cope with environmental stressors
- 2. Evolutionary potential exists but varies substantially among species
- 3. Genomic tools offer novel conservation solutions but require careful implementation

Future research should prioritize:

- Long-term genomic monitoring programs
- Experimental evolution studies
- Development of genomic vulnerability indices

The integration of genomic knowledge with ecosystem management will be critical for preserving marine biodiversity in an era of rapid climate change.

8. References

- 1. IPCC. Climate Change 2021: The Physical Science Basis. Cambridge University Press; c2021.
- 2. Pecl GT, Araújo MB, Bell JD, *et al.* Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science. 2017;355(6332):eaai9214.
- 3. Pörtner HO. Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J Exp Biol. 2010;213(6):881-93.
- 4. Barshis DJ, Ladner JT, Oliver TA, *et al*. Genomic basis for coral resilience to climate change. Proc Natl Acad Sci USA. 2013;110(4):1387-92.
- 5. Schulte PM. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J Exp Biol. 2015;218(Pt 12):1856-66.
- 6. Dahlhoff EP, Fearnley SL, Bruce DA, et al. Mitochondrial acclimation potential to ocean acidification and warming in Polar cod (Boreogadus saida) and Atlantic cod (Gadus morhua). Front Zool. 2019:16:21.
- 7. Ryu T, Veilleux HD, Donelson JM, *et al*. The epigenetic landscape of transgenerational acclimation to ocean warming. Nat Clim Chang. 2018;8(6):504-9.
- 8. Kroeker KJ, Kordas RL, Crim RN, et al. Impacts of ocean acidification on marine organisms: quantifying

- sensitivities and interaction with warming. Glob Chang Biol. 2013;19(6):1884-96.
- 9. Thor P, Dupont S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob Chang Biol. 2015;21(6):2261-71.
- 10. Jin P, Gao K, Beardall J. Evolutionary responses of a coccolithophorid Gephyrocapsa oceanica to ocean acidification. Evolution. 2016;70(1):18-28.
- 11. Schmidtko S, Stramma L, Visbeck M. Decline in global oceanic oxygen content during the past five decades. Nature. 2017;542(7641):335-9.
- 12. Deutsch C, Ferrel A, Seibel B, *et al.* Climate change tightens a metabolic constraint on marine habitats. Science. 2015;348(6239):1132-5.
- 13. Mandic M, Todgham AE, Richards JG. Mechanisms and evolution of hypoxia tolerance in fish. Proc R Soc B. 2020;287(1927):20202437.
- 14. Bay RA, Palumbi SR. Multilocus adaptation associated with heat resistance in reef-building corals. Curr Biol. 2014;24(24):2952-6.
- 15. Dixon GB, Davies SW, Aglyamova GV, *et al.* Genomic determinants of coral heat tolerance across latitudes. Science. 2015;348(6242):1460-2.
- Putnam HM, Gates RD. Preconditioning in the reefbuilding coral Pocillopora damicornis and the potential for trans-generational acclimatization in coral larvae under future climate change conditions. J Exp Biol. 2015;218(Pt 15):2365-72.
- 17. Pinsky ML, Worm B, Fogarty MJ, *et al.* Marine taxa track local climate velocities. Science. 2013;341(6151):1239-42.
- 18. Therkildsen NO, Wilder AP, Conover DO, *et al.* Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science. 2019;365(6452):487-90.
- 19. Gjedrem T, Robinson N, Rye M. The importance of selective breeding in aquaculture to meet future demands for animal protein: A review. Aquaculture. 2012;350-353:117-29.
- 20. Hutchins DA, Fu F. Microorganisms and ocean global change. Nat Microbiol. 2017;2:17058.
- 21. Lohbeck KT, Riebesell U, Reusch TB. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat Geosci. 2012;5(5):346-51.
- 22. Bell G. Evolutionary rescue. Annu Rev Ecol Evol Syst. 2017;48:605-27.
- 23. Donelson JM, Sunday JM, Figueira WF, *et al.* Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos Trans R Soc Lond B Biol Sci. 2019;374(1768):20180186.
- Hoffmann AA, Sgrò CM. Climate change and evolutionary adaptation. Nature. 2011;470(7335):479-85
- 25. Gunderson AR, Armstrong EJ, Stillman JH. Multiple stressors in a changing world: The need for an improved perspective on physiological responses to the dynamic marine environment. Annu Rev Mar Sci. 2016;8:357-78.
- 26. Kelly MW. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos Trans R Soc Lond B Biol Sci. 2019;374(1768):20180176.
- 27. Aitken SN, Whitlock MC. Assisted gene flow to

- facilitate local adaptation to climate change. Annu Rev Ecol Evol Syst. 2013;44:367-88.
- 28. van Oppen MJH, Oliver JK, Putnam HM, *et al.* Building coral reef resilience through assisted evolution. Proc Natl Acad Sci USA. 2015;112(8):2307-13.
- 29. Cleves PA, Strader ME, Bay LK, *et al.* CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc Natl Acad Sci USA. 2018;115(20):5235-40.
- 30. Hoban S, Bruford M, D'Urban Jackson J, *et al.* Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol Conserv. 2020;248:108654.
- 31. Palumbi SR, Barshis DJ, Traylor-Knowles N, *et al.* Mechanisms of reef coral resistance to future climate change. Science. 2014;344(6186):895-8.
- 32. Webster NS, Reusch TB. Microbial contributions to the persistence of coral reefs. ISME J. 2017;11(10):2167-74.
- 33. Tiedke J, Thiel R, Burmester T. Molecular response of estuarine fish to hypoxia: a comparative study with ruffe (Gymnocephalus cernua) and eelpout (Zoarces viviparus). Mar Genomics. 2014;17:3-11.
- 34. Weis VM. Cellular mechanisms of cnidarian bleaching: stress causes the collapse of symbiosis. J Exp Biol. 2008;211(Pt 19):3059-66.
- 35. Sae-Lim P, Kause A, Mulder HA, *et al.* Genotype-by-environment interaction for growth of sole (Solea solea) reared in an intensive aquaculture system. Genet Sel Evol. 2017;49(1):7.
- 36. Brussaard CP, Wilhelm SW, Thingstad F, *et al.* Global-scale processes with a nanoscale drive: the role of marine viruses. ISME J. 2008;2(6):575-8.
- 37. Biller SJ, Berube PM, Lindell D, *et al.* Prochlorococcus: the structure and function of collective diversity. Nat Rev Microbiol. 2015;13(1):13-27.
- 38. Veilleux HD, Ryu T, Donelson JM, *et al.* Molecular processes of transgenerational acclimation to a warming ocean. Nat Clim Chang. 2015;5(12):1074-8.
- 39. Melzner F, Gutowska MA, Langenbuch M, *et al.* Physiological basis for high CO2 tolerance in marine ectothermic animals: pre-adaptation through lifestyle and ontogeny? Biogeosciences. 2009;6(10):2313-31.
- NOAA National Centers for Environmental Information. State of the Climate: Global Climate Report for Annual 2021. 2022.
- 41. Selkoe KA, Henzler CM, Gaines SD. Seascape genetics and the spatial ecology of marine populations. Fish Fish. 2008;9(4):363-77.
- 42. Thomsen PF, Willerslev E. Environmental DNA An emerging tool in conservation for monitoring past and present biodiversity. Biol Conserv. 2015;183:4-18.
- 43. Hennon GMM, Quay P, Morales RL, *et al.* Diatom acclimation to elevated CO2 via cAMP signalling and coordinated gene expression. Nat Clim Chang. 2015;5(8):761-5.
- 44. Pinsky ML, Eikeset AM, McCauley DJ, *et al.* Greater vulnerability to warming of marine versus terrestrial ectotherms. Nature. 2019;569(7754):108-11.
- 45. Salinas S, Brown SC, Mangel M, *et al.* Non-genetic inheritance and changing environments. Non-Genetic Inherit. 2013;1(1):38-50.
- 46. Putnam HM, Davidson JM, Gates RD. Ocean acidification influences host DNA methylation and phenotypic plasticity in environmentally susceptible corals. Evol Appl. 2016;9(9):1165-78.

- 47. Dimond JL, Roberts SB. Germline DNA methylation in reef corals: patterns and potential roles in response to environmental change. Mol Ecol. 2016;25(8):1895-904.
- 48. Hamilton SL, Logan CA, Fennie HW, *et al.* Species-specific responses of juvenile rockfish to elevated pCO2: from behavior to genomics. PLoS One. 2017;12(1):e0169670.
- 49. Jørgensen HB, Hansen MM, Bekkevold D, *et al.* Marine landscapes and population genetic structure of herring (Clupea harengus L.) in the Baltic Sea. Mol Ecol. 2005;14(10):3219-34.
- 50. Reusch TB, Boyd PW. Experimental evolution meets marine phytoplankton. Evolution. 2013;67(7):1849-59.
- 51. Sunday JM, Calosi P, Dupont S, *et al.* Evolution in an acidifying ocean. Trends Ecol Evol. 2014;29(2):117-25.
- 52. Moya A, Huisman L, Ball EE, *et al.* Whole transcriptome analysis of the coral Acropora millepora reveals complex responses to CO2-driven acidification during the initiation of calcification. Mol Ecol. 2012;21(10):2440-54.
- 53. Pespeni MH, Sanford E, Gaylord B, *et al.* Evolutionary change during experimental ocean acidification. Proc Natl Acad Sci USA. 2013;110(17):6937-42.