

Role of Biomarkers in Early Detection of Neurodegenerative Diseases

Lila Dubois 1*, Muhammad Hassan 2

- ¹ Department of Physiology, Sorbonne University, France
- ² Aga Khan University, Pakistan
- * Corresponding Author: Lila Dubois

Article Info

Volume: 01 Issue: 02

March-April 2025 Received: 21-02-2025 **Accepted:** 15-03-2025

Page No: 01-02

Abstract

Neurodegenerative diseases (NDDs), such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neuronal degeneration, leading to cognitive and motor dysfunction. Early detection is crucial for effective intervention, but clinical symptoms often appear after significant neuronal damage has occurred. Biomarkers—measurable indicators of biological processes—play a pivotal role in early diagnosis, prognosis, and therapeutic monitoring. This review explores the latest advancements in biomarker research, including cerebrospinal fluid (CSF) biomarkers, blood-based biomarkers, imaging biomarkers, and genetic markers. We discuss their clinical utility, challenges, and future directions in improving early detection and personalized treatment strategies for NDDs.

Keywords: Neurodegenerative diseases, biomarkers, early detection, Alzheimer's disease, Parkinson's disease, cerebrospinal fluid, neuroimaging

1. Introduction

Neurodegenerative diseases (NDDs) are a major global health burden, affecting millions of individuals worldwide. The most common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). These disorders are characterized by progressive neuronal loss, leading to cognitive decline, motor dysfunction, and, ultimately, severe disability.

A significant challenge in managing NDDs is the late onset of clinical symptoms, which appear only after substantial neuronal damage has occurred. By the time a diagnosis is made, therapeutic interventions may have limited efficacy. Therefore, early detection is critical for delaying disease progression and improving patient outcomes.

Biomarkers—biological molecules, genetic factors, or imaging features—provide a means for early and accurate diagnosis. This paper reviews the current state of biomarker research in NDDs, focusing on their role in early detection, disease monitoring, and therapeutic development.

2. Types of Biomarkers in Neurodegenerative Diseases

Biomarkers for NDDs can be classified into several categories:

2.1. Cerebrospinal Fluid (CSF) Biomarkers

CSF, which bathes the brain and spinal cord, contains proteins and metabolites reflective of neurological health. Key CSF biomarkers include:

• Amyloid-beta (Aβ) and Tau Proteins (AD Biomarkers)

Aβ42 and Aβ40 levels, along with phosphorylated tau (p-tau), are used to diagnose AD.

Decreased Aβ42 and increased p-tau indicate amyloid plaque accumulation and neurofibrillary tangles.

• Elevated NfL levels indicate axonal damage in multiple NDDs, including ALS and AD.

Alpha-Synuclein (PD Biomarker)

Aggregated α -synuclein is a hallmark of PD and dementia with Lewy bodies (DLB).

2.2. Neurofilament Light Chain (NfL) Blood-Based Biomarkers

Blood tests offer a less invasive alternative to CSF analysis. Recent advances include:

• Plasma Aβ and Tau

Ultrasensitive assays (e.g., SIMOA, ELISA) detect ADrelated proteins in blood.

• Inflammatory Markers (e.g., GFAP, IL-6)

Glial fibrillary acidic protein (GFAP) indicates neuroinflammation in AD and PD.

• Exosome-Based Biomarkers

Neuron-derived exosomes contain disease-specific proteins like tau and α -synuclein.

2.3. Neuroimaging Biomarkers

Advanced imaging techniques provide structural and functional insights:

• Magnetic Resonance Imaging (MRI)

Detects brain atrophy patterns (e.g., hippocampal shrinkage in AD).

• Positron Emission Tomography (PET)

Amyloid-PET and Tau-PET visualize protein aggregates in living brains.

 Functional MRI (fMRI) and Diffusion Tensor Imaging (DTI)

Assess connectivity changes in early-stage NDDs.

2.4. Genetic and Epigenetic Biomarkers

- APOE ε4 Allele (AD Risk Factor)
- LRRK2 and SNCA Mutations (PD-Linked Genes)
- DNA Methylation and miRNA Profiles

3. Clinical Applications of Biomarkers

3.1. Early and Differential Diagnosis

- CSF and blood biomarkers help distinguish AD from other dementias.
- α-Synuclein assays differentiate PD from atypical parkinsonism.

3.2. Disease Progression Monitoring

• Serial biomarker measurements track therapeutic efficacy in clinical trials.

3.3. Personalized Medicine

• Genetic profiling enables targeted therapies (e.g., antiamyloid drugs for APOE & carriers).

4. Challenges and Limitations

- Variability in Biomarker Levels: Age, comorbidities, and pre-analytical factors affect reliability.
- High Costs: PET imaging and CSF analysis are expensive and not widely accessible.
- Lack of Standardization: Different assays yield varying results.

5. Future Directions

Multi-Modal Biomarker Panels: Combining CSF, blood, and imaging data for higher accuracy.

Artificial Intelligence (AI): Machine learning models improve early prediction.

Liquid Biopsies: Non-invasive detection of neuronal-derived biomarkers.

6. Conclusion

Biomarkers are transforming the early detection and management of NDDs. While challenges remain, advances in CSF analysis, blood-based assays, and neuroimaging hold promise for earlier, more accurate diagnoses. Future research should focus on standardization, affordability, and integrating multi-omics approaches to enhance clinical utility.

7. References

- 1. Jack CR Jr, Bennett DA, Blennow K, *et al.* NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease. *Alzheimers Dement.* 2018;14(4):535-562. doi:10.1016/j.jalz.2018.02.018
- 2. Mollenhauer B, Caspell-Garcia CJ, Coffey CS, *et al.* Longitudinal analyses of cerebrospinal fluid α-Synuclein in prodromal and early Parkinson's disease. *Mov Disord.* 2019;34(9):1354-1364. doi:10.1002/mds.27806
- 3. Zetterberg H, Bendlin BB. Biomarkers for Alzheimer's disease—preparing for a new era of disease-modifying therapies. *Mol Psychiatry*. 2021;26(1):296-308. doi:10.1038/s41380-020-0721-9
- 4. Hansson O. Biomarkers for neurodegenerative diseases. *Nat Med.* 2021;27(6):954-963. doi:10.1038/s41591-021-01382-x
- 5. Gaetani L, Blennow K, Calabresi P, *et al.* Neurofilament light chain as a biomarker in neurological disorders. *J Neurol Neurosurg Psychiatry.* 2019;90(8):870-881. doi:10.1136/jnnp-2018-320106