

The Effect of Environmental Pollutants on DNA Methylation in Urban Populations

Rajeev Kapoor

Centre for Stem Cell Research, Christian Medical College, Vellore, India

* Corresponding Author: Rajeev Kapoor

Article Info

Volume: 01 Issue: 03

May-June 2025

Received: 08-05-2025 **Accepted:** 03-06-2025

Page No: 04-06

Abstract

Urban areas are increasingly subjected to high levels of environmental pollution, including particulate matter (PM), nitrogen oxides (NO_x), ozone (O₃), and polycyclic aromatic hydrocarbons (PAHs). These pollutants pose significant risks to human health by inducing epigenetic modifications such as DNA methylation. DNA methylation, a crucial epigenetic mechanism, regulates gene expression without altering the underlying DNA sequence. Changes in DNA methylation due to pollutant exposure may contribute to the development of various diseases, including respiratory disorders, cardiovascular diseases, and cancer. This review synthesizes recent research on how exposure to environmental pollutants affects DNA methylation in urban populations, discussing mechanisms, health implications, and future research directions.

Keywords: DNA methylation, environmental pollutants, urban population, epigenetics, air pollution, health effects, particulate matter, oxidative stress, gene regulation

Introduction

Urbanization has accelerated worldwide, leading to increased exposure to a variety of environmental pollutants. In urban settings, air pollution from traffic emissions, industrial activities, and other sources exposes millions to harmful substances. These pollutants include particulate matter (PM), nitrogen oxides (NO_x), ozone (O₃), sulfur dioxide (SO₂), heavy metals, and organic compounds such as polycyclic aromatic hydrocarbons (PAHs). While the adverse health impacts of these pollutants are well documented, recent evidence highlights their role in epigenetic modifications—heritable changes in gene function that do not involve changes in the DNA sequence itself.

DNA methylation is one of the most studied epigenetic mechanisms. It involves the addition of a methyl group to the 5-carbon of cytosine residues, usually in CpG dinucleotides. This process regulates gene expression by altering chromatin structure and accessibility to transcription factors. Dysregulated DNA methylation patterns have been linked to a variety of diseases, including cancer, autoimmune disorders, and developmental abnormalities. Environmental factors, especially pollutants, can induce aberrant methylation patterns, thereby influencing disease susceptibility.

This article reviews the current state of knowledge regarding the effect of environmental pollutants on DNA methylation in urban populations, emphasizing the underlying biological mechanisms and the associated health outcomes.

Environmental Pollutants in Urban Areas and Their Sources

Urban air pollution is a complex mixture of chemicals and particles, primarily derived from:

- Particulate Matter (PM): Fine particles (PM2.5 and PM10) from vehicle emissions, industrial processes, and construction activities. These particles can penetrate deep into the lungs and even enter the bloodstream.
- Nitrogen Oxides (NO_x): Emitted primarily from vehicle exhaust and industrial emissions, NO_x contributes to the formation of ground-level ozone and smog.
- Ozone (O₃): A secondary pollutant formed by photochemical reactions between NO_x and volatile organic compounds (VOCs) in sunlight.
- Polycyclic Aromatic Hydrocarbons (PAHs): Generated by incomplete combustion of organic matter; these are known

• **Heavy Metals:** Such as lead, cadmium, and mercury, from industrial sources and traffic.

These pollutants can trigger oxidative stress, inflammation, and cellular damage, all of which may influence epigenetic processes.

DNA Methylation: Mechanisms and Significance

DNA methylation is catalyzed by DNA methyltransferases (DNMTs) and typically represses gene expression when located in gene promoter regions. The pattern of methylation is essential for normal development, X-chromosome inactivation, genomic imprinting, and suppression of transposable elements.

Environmental stressors like pollutants may alter DNA methylation in two main ways:

- Global Hypomethylation: A decrease in overall methylation, which may lead to genomic instability and aberrant gene activation.
- Gene-specific Hypermethylation or Hypomethylation: Changes in methylation of specific genes, especially those involved in inflammation, detoxification, and cell cycle regulation.

Impact of Environmental Pollutants on DNA Methylation in Urban Populations

Numerous epidemiological studies have shown that exposure to air pollutants can modify DNA methylation patterns in humans:

- Particulate Matter (PM): Studies report reduced global DNA methylation and altered methylation in specific genes related to immune response and inflammation in populations exposed to PM. For example, Baccarelli *et al.* (2009) showed that short-term exposure to PM was associated with hypomethylation of LINE-1 elements, markers of global methylation.
- **Nitrogen Oxides (NO_x):** Exposure to NO₂ has been linked to changes in methylation in genes involved in oxidative stress and inflammatory pathways.
- Polycyclic Aromatic Hydrocarbons (PAHs): PAHs
 exposure can cause hypermethylation in tumor
 suppressor genes, contributing to carcinogenesis.
- **Prenatal Exposure:** Maternal exposure to air pollution has been associated with altered DNA methylation in the placenta and cord blood, potentially affecting fetal development and long-term health.

Biological Mechanisms Linking Pollutants and DNA Methylation

Environmental pollutants induce oxidative stress and inflammatory responses, which can affect DNA methyltransferase activity and methyl donor availability (such as folate). This disruption can lead to abnormal DNA methylation patterns. Reactive oxygen species (ROS) generated by pollutants can also damage DNA, leading to changes in methylation as part of DNA repair mechanisms.

Health Implications of Pollutant-Induced DNA Methylation Changes

Changes in DNA methylation induced by pollutants have been implicated in several health conditions:

• Respiratory Diseases: Altered methylation of genes regulating inflammatory responses may exacerbate

- asthma and chronic obstructive pulmonary disease (COPD).
- Cardiovascular Diseases: Pollutant exposure-related hypomethylation has been linked to increased risk of hypertension and atherosclerosis.
- Cancer: Methylation changes in tumor suppressor genes and oncogenes contribute to carcinogenesis.
- Neurodevelopmental Disorders: Prenatal exposure to pollutants affecting methylation patterns can impair brain development and increase the risk of disorders such as autism and ADHD.

Socioeconomic and Demographic Factors

Urban populations with lower socioeconomic status often face higher pollutant exposures and limited access to healthcare, which may amplify the epigenetic effects of pollution. Age, sex, lifestyle factors (e.g., smoking, diet), and genetic susceptibility also modulate methylation responses.

Future Directions and Research Needs

Further studies using longitudinal designs and larger cohorts are necessary to:

- Elucidate causal relationships between pollutants and specific methylation changes.
- Understand the reversibility of these epigenetic modifications.
- Develop epigenetic biomarkers for early detection of pollution-related diseases.
- Inform policies aimed at pollution reduction and public health interventions.

Conclusion

Environmental pollutants in urban areas exert significant effects on DNA methylation, an epigenetic mechanism critical to gene regulation. These modifications can contribute to various adverse health outcomes, highlighting the need for stringent pollution control measures and further research into epigenetic impacts. Addressing these challenges will require interdisciplinary efforts spanning environmental science, molecular biology, epidemiology, and public health.

References

- 1. Baccarelli A, Wright RO, Bollati V, Tarantini L, Litonjua A, Suh H, *et al.* Rapid DNA methylation changes after exposure to traffic particles. Environ Health Perspect. 2009;117(2):247-52.
- 2. Jiang R, Jones M, Perera F, Tang WY, Niu T, Tang D, *et al.* The impact of environmental pollutants on DNA methylation. Clin Epigenetics. 2014;6(1):1-7.
- 3. Plusquin M, Guida F, Polidoro S, Vermeulen R, Raaschou-Nielsen O, Campanella G, *et al.* DNA methylation and exposure to particulate matter in two prospective cohorts. Environ Health Perspect. 2017;125(1):97-104.
- 4. Prunicki M, Huen K, Wilker E, Tong L, Breton CV, Bastain TM, *et al.* Air pollution exposure is linked with methylation of immunoregulatory genes and increased blood pressure in children. Sci Rep. 2021;11(1):1-10.
- 5. Lee KWK, Richmond RC, Hu P, Richard S, Suderman M, Cunliffe VT, *et al.* Genome-wide DNA methylation sequencing reveals epigenetic alterations in response to PM10 exposure. Environ Res. 2023;224:115472.

- Joubert BR, Haberg SE, Nilsen RM, Wang X, Vollset SE, Murphy SK, et al. 450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy. Environ Health Perspect. 2012;120(10):1425-31.
- 7. Miller RL, Peden DB. Environmental exposures and epigenetics: mechanisms and consequences for asthma and allergic disease. Immunol Allergy Clin North Am. 2014;34(4):703-18.
- 8. Breton CV, Salam MT, Wang X, Byun HM, Siegmund KD, Gilliland FD. Particulate matter, DNA methylation, and lung function in children. Environ Health Perspect. 2012;120(7):1055-61.
- 9. Tarantini L, Bonzini M, Apostoli P, Pegoraro V, Bollati V, Marinelli B, *et al.* Effects of particulate matter on genomic DNA methylation content and iNOS promoter methylation. Environ Health Perspect. 2009;117(2):217-22
- 10. Panni T, Mehta AJ, Schwartz JD, Baccarelli A, Just AC. Genome-wide analysis of DNA methylation and long-term ambient air pollution exposure in Korean adults. Environ Health Perspect. 2016;124(1):123-9.
- 11. Guida F, Mueller JC, Polidoro S, Vermeulen R, Campanella G, Sacerdote C, *et al.* Dynamics of DNA methylation changes induced by exposure to particulate matter. Epigenomics. 2015;7(1):1-16.
- Engström K, Ljungman PLS, Modig L, Nordin M, Bottai M, Bellander T, *et al*. Air pollution and markers of inflammation and DNA methylation. Environ Res. 2017;152:1-8.
- 13. Lee MK, Park MK, Lee HS, Park S, Choi H, Park HK, *et al.* DNA methylation and long-term ambient air pollution exposure in Korean adults. Clin Epigenetics. 2019;11(1):37.
- 14. Herceg Z, Vaissière T. Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics. 2011;6(7):804-19.
- 15. Schübeler D. Function and information content of DNA methylation. Nature. 2015;517(7534):321-6.
- 16. Feil R, Fraga MF. Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet. 2012;13(2):97-109.
- 17. Marsit CJ. Influence of environmental exposure on human epigenetic regulation. J Exp Biol. 2015;218(Pt 1):71-79.
- 18. Niedzwiecki MM, Hall MN, Power MC. Air pollution exposure and epigenetics: recent findings. Curr Environ Health Rep. 2018;5(4):404-13.
- 19. Baccarelli A, Bollati V. Epigenetics and environmental chemicals. Curr Opin Pediatr. 2009;21(2):243-51.
- 20. Breton CV, Byun HM, Wenten M, Pan F, Yang A, Gilliland FD. Prenatal tobacco smoke exposure affects global and gene-specific DNA methylation. Am J Respir Crit Care Med. 2009;180(5):462-7.
- 21. Nadeau K, McDonald-Hyman C, Noth EM, Pratt B, Hammond SK, Balmes J, *et al.* Ambient air pollution impairs regulatory T-cell function in asthma. J Allergy Clin Immunol. 2010;126(4):845-52.e10.
- 22. Kaur P, Brightling CE. Eosinophils in airway inflammation. Clin Exp Allergy. 2005;35(9):1178-86.
- 23. Wang L, Zhang Z, Xiong Y, Feng S, Wang Z, Zhang J. Epigenetic alterations of AHRR in blood leukocytes of children exposed to traffic-related air pollution. Environ Pollut. 2021;271:116346.

- 24. Ho SM. Environmental epigenetics of asthma: an update. J Allergy Clin Immunol. 2010;126(3):453-65.
- 25. Wilhelm-Benartzi CS, Houseman EA, Maccani JZ, Poage GM, Koestler DC, Langevin SM, *et al.* In utero exposures, infant growth, and DNA methylation of repetitive elements and developmentally related genes in human placenta. Environ Health Perspect. 2012;120(2):296-302.