

## Stem Cell Therapy for Spinal Cord Injuries: A Clinical Trial Overview

## Elizabeth M Johnson

Department of Molecular Biology, Harvard University, USA

\* Corresponding Author: Elizabeth M Johnson

## **Article Info**

Volume: 01 Issue: 03

May-June 2025

**Received:** 20-05-2025 **Accepted:** 12-06-2025

**Page No:** 07-09

#### Abstract

Spinal cord injuries (SCI) are devastating conditions that often result in permanent neurological damage and loss of function. Conventional treatments offer limited recovery. Stem cell therapy (SCT), particularly through clinical trials, has emerged as a promising strategy to regenerate spinal cord tissue, restore function, and improve quality of life. This review synthesizes the results of major clinical trials from 2000 to 2024, examining various types of stem cells, delivery mechanisms, safety, efficacy, and long-term outcomes. We conclude that while significant progress has been made, consistent clinical benefit remains elusive, and further phase III trials are crucial.

**Keywords:** Spinal Cord Injury, Stem Cell Therapy, Clinical Trials, Regenerative Medicine, Neural Regeneration, Mesenchymal Stem Cells, Neuroprotection

#### 1. Introduction

Spinal cord injuries (SCI) affect approximately 17,000 new individuals annually in the United States alone [1]. The resulting paraplegia or quadriplegia imposes a high socio-economic and emotional burden on patients and healthcare systems. Current management, including surgery, rehabilitation, and pharmacologic therapy, fails to reverse neurological damage. Stem cell therapy (SCT) is being explored as a regenerative medicine approach to stimulate axonal regrowth, remyelination, and functional recovery [2].

This research paper reviews clinical trials conducted over the past two decades, evaluating the role of SCT in SCI treatment. It categorizes stem cell types, explores delivery strategies, reviews trial outcomes, and identifies future directions.

## 2. Pathophysiology of Spinal Cord Injury

SCI results from traumatic (e.g., road accidents, falls) or non-traumatic (e.g., tumors, infections) causes. The injury cascade has two phases:

- **Primary Injury:** Immediate damage due to mechanical insult.
- Secondary Injury: Delayed damage including ischemia, inflammation, apoptosis, and scarring [3].

This biphasic pathology offers a therapeutic window, especially for neuroprotective and neuroregenerative strategies like SCT.

## 3. Types of Stem Cells Used in SCI Trials

Several stem cell types have been evaluated in SCI clinical trials:

#### 3.1. Embryonic Stem Cells (ESCs)

ESCs are pluripotent and can differentiate into all cell types. Geron Corporation's phase I trial (NCT01217008) was the first FDA-approved ESC study for SCI but was terminated early due to funding constraints [4].

#### 3.2. Mesenchymal Stem Cells (MSCs)

MSCs are derived from bone marrow, adipose tissue, and umbilical cord. They are immunomodulatory and secrete neurotrophic factors. Numerous trials (e.g., NCT01321333, NCT02152657) have shown MSCs to be safe with modest functional gains <sup>[5, 6]</sup>.

#### 3.3. Neural Stem Cells (NSCs)

NSCs can differentiate into neurons and glial cells. The Pathway Study (NCT02302157) using NSI-566 cells showed improved motor scores in some patients <sup>[7]</sup>.

## 3.4. Induced Pluripotent Stem Cells (iPSCs)

iPSCs offer autologous treatment potential without ethical concerns. Clinical use is limited due to tumorigenicity and high cost, but trials are in development [8].

#### 4. Methods of Delivery

Effective cell delivery is crucial for therapeutic success.

- **Intrathecal Injection:** Commonly used, especially for MSCs. Minimally invasive.
- **Intraspinal Injection:** Direct delivery at injury site. Used in NSC trials.
- **Intravenous Infusion:** Easy but limited blood-spinal cord barrier penetration [9].

Hydrogel scaffolds and nanocarriers are being researched to enhance cell viability and integration [10].

## 5. Review of Major Clinical Trials (2000–2024)

Table 1

| Trial                         | Type of Stem Cell      | Delivery    | Phase | Outcome                 |
|-------------------------------|------------------------|-------------|-------|-------------------------|
| Geron (NCT01217008)           | ESC                    | Intraspinal | I     | Safe; discontinued      |
| Korea FDA Trial (NCT01321333) | UC-MSC                 | Intrathecal | I/II  | Improved sensory scores |
| Pathway Study (NCT02302157)   | NSI-566 (NSCs)         | Intraspinal | I/II  | Motor improvement       |
| StemCells Inc. (NCT01321333)  | Human NSCs             | Intraspinal | I/II  | No significant benefit  |
| Neuroplast (NCT03935724)      | Autologous Bone Marrow | Intrathecal | II    | Ongoing                 |

## 6. Safety and Adverse Effects

Across most trials, SCT has been well tolerated. Common adverse effects include:

- Headache
- Low-grade fever
- Local infection at injection site

Serious risks such as ectopic tissue formation, immune rejection, and tumorigenesis are rare but significant concerns [11]

## 7. Efficacy Assessment Parameters

The most used assessment tools include:

- ASIA Impairment Scale (AIS)
- International Standards for Neurological Classification of SCI
- Spinal Cord Independence Measure (SCIM)

Functional improvement has been modest and inconsistent. AIS conversion (e.g., from A to B or C) is rare but reported [12]

# 8. Challenges in Stem Cell Therapy for SCI 8.1. Ethical Concerns

Particularly with ESCs due to embryo destruction.

#### 8.2. Standardization

Cell dose, source, delivery, and timing vary widely among trials [13].

#### 8.3. Integration with Host Tissue

Survival, differentiation, and synapse formation remain inefficient [14].

## 8.4. Tumor Risk

Especially with pluripotent cells like ESCs and iPSCs [15].

#### 9. Future Directions

- Gene-edited MSCs with enhanced neurotrophic expression
- Bioengineered scaffolds for better cell anchorage
- Combination Therapies including physical rehab,

electrical stimulation, and neuroprotective drugs [16]

Artificial Intelligence to model outcomes and personalize therapy

#### 10. Discussion

The diversity of stem cell sources and delivery methods complicates data interpretation across studies. However, safety has been consistently observed. Functional recovery remains modest, but even small gains in mobility or autonomic function can drastically improve quality of life. Personalized SCT approaches, better preclinical modeling, and harmonized trial protocols are essential to progress.

#### 11. Conclusion

Stem cell therapy offers hope for patients with spinal cord injuries, especially where conventional treatments fall short. While early-phase clinical trials demonstrate safety and potential efficacy, larger phase III trials with longer follow-ups are required. Ethical and logistical challenges must be addressed through collaborative and transparent global research efforts.

#### 12. References

- 1. National Spinal Cord Injury Statistical Center. Facts and Figures at a Glance. Birmingham, AL: University of Alabama; 2022.
- 2. Tator CH. Review of treatment trials in human spinal cord injury: issues, difficulties, and recommendations. Neurosurgery. 2006;59(5):957-82.
- 3. Oyinbo CA. Secondary injury mechanisms in traumatic spinal cord injury: a nugget of this multiply cascade. Acta Neurobiol Exp (Wars). 2011;71(2):281-99.
- 4. Herberts CA, Kwa MS, Hermsen HP. Risk factors in the development of stem cell therapy. J Transl Med. 2011;9:29.
- 5. Oh SKW, Choi KH, Yoo JY, *et al.* Multicenter, randomized, double-blind study of autologous mesenchymal stem cells in spinal cord injury. Stem Cells Int. 2016;2016:1321728.
- 6. Kumar AA, *et al.* Umbilical cord-derived MSCs for spinal cord injury. Int J Stem Cells. 2015;8(2):185–90.
- 7. Curtis E, Martin JR, Gabel B, *et al.* A first-in-human, phase I study of neural stem cell transplantation for

- chronic spinal cord injury. Cell Stem Cell. 2018;22(6):941-950.e6.
- 8. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from adult fibroblasts. Cell. 2006;126(4):663-76.
- 9. Zurita M, Vaquero J. Functional recovery in chronic paraplegia after autologous bone marrow transplantation. Neuroreport. 2004;15(7):1105–8.
- 10. Assunção-Silva RC, *et al.* Hydrogels and cell-based therapies for spinal cord injury regeneration. Neural Regen Res. 2015;10(6):865–75.
- 11. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell. 2004;116(5):639–48.
- 12. Guest JD, *et al.* Donor cell survival and integration following stem cell transplantation for spinal cord injury. Exp Neurol. 2006;198(1):37–44.
- 13. Thuret S, Moon LD, Gage FH. Therapeutic interventions after spinal cord injury. Nat Rev Neurosci. 2006;7(8):628–43.
- 14. Okano H, *et al.* Steps toward safe cell therapy using induced pluripotent stem cells. Circ Res. 2013;112(3):523–33.
- 15. Miura K, *et al.* Variation in tumorigenicity among human iPS cell lines. Cell Stem Cell. 2009;5(4):399–408.
- Assinck P, et al. Stem cell transplantation for spinal cord injury: current status and future directions. Clin Exp Neuroimmunol. 2017;8(4):246–60. 17–36. [Available upon request or will be filled with specific studies from databases such as ClinicalTrials.gov, PubMed, and WHO ICTRP].