

Role of Mitochondrial Dysfunction in Aging and Age-Related Diseases

Alice Wu 1*, Johann Müller 2

- ¹ School of Biomedical Engineering, Tsinghua University, China
- ² Max Planck Institute for Biophysical Chemistry, Germany
- * Corresponding Author: Alice Wu

Article Info

Volume: 01 Issue: 03

May-June 2025 Received: 17-05-2025 Accepted: 11-06-2025 Page No: 13-15

Abstract

Mitochondria, essential organelles known for ATP production and metabolic regulation, play a crucial role in the aging process and the development of age-related diseases. Mitochondrial dysfunction, marked by impaired oxidative phosphorylation, increased reactive oxygen species (ROS), and altered mitochondrial dynamics, is a hallmark of aging. This review comprehensively discusses the mechanisms underlying mitochondrial dysfunction, its impact on cellular senescence, and its contribution to diseases such as neurodegeneration, cancer, cardiovascular disorders, and metabolic syndromes. The paper also highlights emerging therapeutic strategies aimed at restoring mitochondrial health, offering insights into healthy aging and longevity.

Keywords: Mitochondria, Aging, ROS, Mitochondrial DNA, Oxidative Stress, Neurodegeneration, Cardiovascular Diseases, Mitochondrial Biogenesis, Cellular Senescence

1. Introduction

Aging is a complex, multifactorial biological process associated with a gradual decline in cellular function and an increased risk of diseases such as Alzheimer's, cardiovascular disease, diabetes, and cancer [1]. Mitochondria play a central role in these processes, acting as energy hubs and regulators of apoptosis and redox balance [2]. The mitochondrial free radical theory of aging (MFRTA) suggests that ROS generated during oxidative phosphorylation damage mitochondrial DNA (mtDNA), leading to progressive dysfunction and aging [3].

2. Mitochondrial Structure and Function

Mitochondria consist of an outer membrane, intermembrane space, inner membrane (with cristae), and matrix. The electron transport chain (ETC) embedded in the inner membrane is crucial for ATP production ^[4]. Mitochondria are also involved in calcium signaling, lipid metabolism, and apoptosis regulation ^[5].

3. Mechanisms of Mitochondrial Dysfunction in Aging

3.1. Accumulation of mtDNA Mutations

MtDNA is particularly vulnerable due to proximity to ROS and lack of protective histones. Mutations accumulate with age, compromising ETC integrity [6,7].

3.2. Oxidative Stress and ROS

ROS, primarily generated at Complex I and III of the ETC, can damage lipids, proteins, and nucleic acids. Aging tissues show increased ROS levels and diminished antioxidant capacity [8-10].

3.3. Impaired Mitochondrial Dynamics

Fusion (regulated by MFN1/2, OPA1) and fission (DRP1, FIS1) are essential for mitochondrial quality control. Aging is associated with imbalanced dynamics, leading to fragmented or hyperfused mitochondria [11, 12].

3.4. Decreased Mitophagy

Selective autophagy of dysfunctional mitochondria declines with age, contributing to accumulation of defective organelles [13, 14].

3.5. NAD+ Depletion

NAD+ is essential for sirtuin activation and mitochondrial health. Its levels decline with age, impairing metabolic regulation and DNA repair [15, 16].

4. Role in Age-Related Diseases

4.1. Neurodegenerative Disorders

Mitochondrial dysfunction is a major contributor to Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Defects in Complex I and decreased ATP levels have been reported in AD brains [17–19]

4.2. Cardiovascular Diseases (CVDs)

Age-related heart failure and atherosclerosis are linked to oxidative damage, mitochondrial calcium overload, and reduced mitochondrial biogenesis [20–22].

4.3. Metabolic Disorders

Mitochondrial dysfunction contributes to insulin resistance, type 2 diabetes, and obesity. Defective β -oxidation and increased ROS impair pancreatic β -cell function [23–25].

4.4. Cancer

Altered mitochondrial metabolism (Warburg effect), mutations in mitochondrial genes, and ROS-driven genomic instability promote tumorigenesis [26–28].

4.5. Sarcopenia and Muscle Aging

Mitochondrial degradation in skeletal muscles leads to muscle atrophy, reduced endurance, and physical decline in the elderly [29, 30].

5. Therapeutic Strategies Targeting Mitochondria 5.1. Antioxidants

Compounds like Coenzyme Q10, MitoQ, and vitamin E have been explored, but their clinical efficacy remains limited due to poor bioavailability [31, 32].

5.2. NAD+ Precursors

Nicotinamide riboside (NR) and nicotinamide mononucleotide (NMN) boost NAD+ levels and improve mitochondrial function in aging models [33, 34].

5.3. Caloric Restriction and Fasting

These interventions enhance mitochondrial biogenesis and reduce oxidative stress via AMPK and sirtuin pathways [35, 36]

5.4. Mitochondrial Biogenesis Inducers

Activators of PGC-1α (like resveratrol and exercise) promote formation of new mitochondria [37, 38].

5.5. Gene Therapy and CRISPR

Techniques targeting mtDNA mutations using mitochondriatargeted nucleases are emerging but are in early research stages [39].

5.6. Senolytics and Mitophagy Enhancers

Drugs like urolithin A and spermidine promote mitophagy and rejuvenate mitochondrial populations [40,41].

6. Mitochondrial Biomarkers of Aging

Markers such as mitochondrial membrane potential, mtDNA copy number, ROS levels, and citrate synthase activity are used to assess mitochondrial health in aging studies [42–44].

7. Future Directions

- **Precision Mitochondrial Medicine:** Personalized therapies targeting mtDNA variants.
- AI in Mitochondrial Pathology Prediction: Integrating omics data to predict dysfunction.
- Stem Cell-Based Mitochondrial Transfer: Replacing defective mitochondria in degenerative diseases [45–47].

8. Discussion

Mitochondrial dysfunction is not only a hallmark but also a driver of aging. Therapeutic interventions targeting mitochondrial metabolism, dynamics, and genome integrity hold promise in delaying age-related degeneration. However, translating these findings from animal models to humans requires rigorous validation.

9. Conclusion

The centrality of mitochondrial health in aging and disease underscores the need for integrated research and targeted therapies. Addressing mitochondrial dysfunction offers a viable path to healthier aging and mitigation of age-associated pathologies.

10. References

- 1. López-Otín C, et al. Cell. 2013;153(6):1194-217.
- 2. Wallace DC. Science. 2005;308(5728):392-5.
- 3. Harman D. J Gerontol. 1956;11(3):298–300.
- 4. Lodish H, *et al.* Molecular Cell Biology. 8th ed. W.H. Freeman; 2016.
- 5. Nunnari J, Suomalainen A. Cell. 2012;148(6):1145–59.
- 6. Larsson NG. Annu Rev Biochem. 2010;79:683-706.
- 7. Kujoth GC, et al. Science. 2005;309(5733):481-4.
- 8. Finkel T, Holbrook NJ. Nature. 2000;408(6809):239–47.
- 9. Murphy MP. Biochem J. 2009;417(1):1–13.
- 10. Balaban RS, et al. Cell. 2005;120(4):483-95.
- 11. Youle RJ, van der Bliek AM. Science. 2012;337(6098):1062–5.
- 12. Twig G, Shirihai OS. EMBO J. 2011;30(6):1190–203.
- 13. Palikaras K, Tavernarakis N. Curr Opin Cell Biol. 2014;26:34–40.
- 14. Sun N, et al. Nat Rev Mol Cell Biol. 2016;17(4):213-26.
- 15. Gomes AP, et al. Cell. 2013;155(7):1624–38.
- 16. Mills KF, et al. Cell Metab. 2016;24(6):795-806.
- 17. Swerdlow RH. Transl Neurodegener. 2018;7:5.
- 18. Wang X, et al. Mol Neurodegener. 2009;4:9.
- 19. Johri A, Beal MF. Antioxid Redox Signal. 2012;16(9):1033–63.
- 20. Lesnefsky EJ, et al. J Mol Cell Cardiol. 2016;95:104-13.
- 21. Dai DF, et al. Circ Res. 2014;114(9):1364-76.
- 22. Zorov DB, et al. Physiol Rev. 2014;94(3):909-50.
- 23. Lowell BB, Shulman GI. Science. 2005;307(5708):384-7.
- 24. Petersen KF, Shulman GI. Am J Physiol. 2002;283:E733–E738.

- 25. Morino K, *et al.* Trends Endocrinol Metab. 2006;17(5):183–8.
- 26. Warburg O. Science. 1956;123(3191):309-14.
- 27. Vyas S, et al. Cell Res. 2016;26(2):201–12.
- 28. Chandel NS. Nat Rev Cancer. 2014;14(11):709–21.
- 29. Romanello V, Sandri M. J Cachexia Sarcopenia Muscle. 2015;6(3):200–10.
- 30. Joseph AM, *et al.* J Gerontol A Biol Sci Med Sci. 2012;67(9):989–1000.
- 31. Smith RA, Murphy MP. J Bioenerg Biomembr. 2010;42(6):449–56.
- 32. Bentinger M, *et al.* Mitochondrion. 2007;7(Suppl):S41–50
- 33. Trammell SAJ, et al. Nat Commun. 2016;7:12948.
- 34. Canto C, Auwerx J. Cell Metab. 2012;15(4):566-78.
- 35. Lopez-Lluch G, Navas P. Biochim Biophys Acta. 2016;1857(8):1243–9.
- 36. Redman LM, et al. Cell Metab. 2018;27(4):805-815.e4.
- 37. Scarpulla RC. Biochim Biophys Acta. 2011;1813(7):1269–78.
- 38. Lagouge M, et al. Cell. 2006;127(6):1109-22.
- 39. Gammage PA, Viscomi C. EMBO J. 2017;36(15):2107–23
- 40. Ryu D, et al. Nat Med. 2016;22(8):879-88.
- 41. Madeo F, et al. Cell Death Dis. 2018;9:50.
- 42. Green DR, Galluzzi L. Science. 2011;333(6048):1109–12.
- 43. Gouspillou G, et al. Exp Gerontol. 2010;45(7–8):529–37
- 44. Bektas A, et al. Mech Ageing Dev. 2018;170:2–10.
- 45. McCully JD, et al. J Mol Cell Cardiol. 2009;46(6):814–22
- 46. Yao Y, et al. Cell Death Dis. 2016;7:e2213.
- 47. Phinney DG, et al. Nat Med. 2015;21(7):809-16.
- 48. Klinge CM. Mitochondrion. 2020;54:1-7.
- 49. Picard M, et al. Cell Metab. 2016;23(1):27-43.